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Preface 

T
HIS IS a book for those who have already decided that identifying a dependable 
relationship between a cause and its effects is a high priority ~nd who wish to 
consider experimental methods for doing so. Such causal relationships are of 

great importance in human affairs. The rewards associated with being correct in 
identifying causal relationships can be high, and the costs of misidentification can 
be tremendous. To know whether increased schooling pays,off in later life happi­
ness or in increased lifetime earnings is a boon to individuals facing the decision 
about whether to spend more time in school, and it also helps policymakers de­
termine how much financiaJ support to give educational ipstitutions. In health, 
from the earliest years of hmnan existence, causation has heiped to identify which 
strategies are effective in dealing with disease. In pharmaq:>logy, divinations and 
reflections on experience in the remote past sometimes led to 'the development of 
many useful treatments, but other judgments about effective plants and ways of 
placating gods were certainly more incorrect than correct and presumably con­
tributed to many unnecessary deaths. The utility of finding such causal connec­
tions is so widely understood that much effort goes to locating them in both hu­
man affairs in general and in science in particular. 

However, history also teaches us that it is rare for those causes to be so uni­
versally tme that they hold under all conditions with all types of people and at all 
historical time periods. All causal statements are inevitably contingent. Thus, al­
though threat from an out-group often causes in-group cohe~ion, this is not al­
ways the case. For instance, in 1492 the king of Granada had to watch as his 
Moorish subjects left the city to go to their ancestral homes in North Africa, be­
ing unwilling to fight against the numerically superior troops of the Catholic kings 
of Spain who were lodgeq in Santa Fe de la Frontera nearby. Here, the external 
threat from the out-group of Christian Spaniards led not to increased social co­
hesion among the Moslem Spaniards but rather to the latter's disintegration as a 
defensive force. Still, some causal hypotheses are more contingent than others. It 
is of obvious utility to learn as much as one can about those contingencies and to 
identify those relationships that hold more consistently. For instance, aspirin is 
such a wonderful drug because it reduces the symptoms associated with many dif­
ferent kinds of illness, including head colds, colon cancer, <!Pd cardiovascular dis­
ease; it works whether taken at low or high altitudes, iJ?, warm or cold climes, in 
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capsule or liquid form, by children or adults; and it is effective in people who suf­
fer from !Jl;ariy types of secondary infirmity other than stomach ulcers. However, 
qther drugs are more limited in their range of application, able to alleviate only 
one type of cancer, say, and then only in patients with a certain degree of physical 
strength, only when the dose is strictly adhered to, or only if antibodies have not 
already developed to counteract the drug. Although the lay use of causal language 
is oft~ general, it is important to identify the most important conditions that limit 
the applicability of causal connections. 

This book has two major purposes that parallel this dual interest in identify­
ing causal connections and in underst;mding their generality. The first is to de­
scribe ways in which testing causal propositions can be improved in specific re­
search projects. To achieve this we prefer to use what we call structural design 
features from the theory of experimentation rather than to use statistical model-

• ing procedures. Recent statistical developments concerning cau'sal inference in ob­
<Servational data (e.g., Holland, 1986; Rosenbaum, 1995a; Rubin, 1986) have ad­
vanced understanding enormously. However, to judge from our experience in 
cons]Jlting to field experiments, those developments may hav~ also created an un­
realistic expectation among some readers that new statistics~; such as propensity 
score matching or stratification, selection bias models, and hidden bias sensitivity 
analyses, can by themselves suffice to warrant valid causal inference. Although 
such adjustments are sometimes necessary and frequently useful after good ex­
perimental design features are in place, they'J1lay work poorly without such fea­
tures. Too few economists and statisticians who are associatedwith these new de­
velopments have emphasized the importance of such design features-though we 
are pleased to see more recent emphasis on these design features in, for example, 
Heckman, Ichimura, and Todd (1997) on the use of common measurement frame­
works and local controls, Winship and Morgan (1999) on the usefulness of mul­
tiple pretests and posttests, and Rosenbaum (1999b) o'n the importance of many 
design choices in observational data. W~ want this book to complement such sta­
tistical work by emphasizing that, in the interplay between design and statistics, 
design rules (Shadish & Cook, 1999)! 

The second purpose of this book is to describe ways to improve general­
izations about causal propositions. Although formal sampling procedures are 
the best warranted means of generalizing, they rarely apply to generalizing 
about causal relationships. So we turn instead to improving causal generaliza­
tion through a grounded theory of causal generalization. This theory reflects 
the principles that scientists use in their daily work to make generalizations in 
such diverse areas as animal modelip.g of human disease, deciding if a specimen 
belongs to a more general category, identifying general trends in literature re­
views, and deciding whether epidemiological studies support a general connec­
tion between secondhand smoke and cancer. The result is, we hope, a more 
practical theory of causal generalization than sampling theory but one that in­
corporates sampling theory as a special case. 
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In these dual purposes, this book is a successor to Campbell and Stanley 
(1963) and Cook and Campbell (1979). However, it differs from them in several 
important ways. The most obvious is the emphasis now placed on the generaliza­
tion of causal connections. Though this past work clearly acknowledged the im­
portance of such generalization and even coined the phrase "external validity" to 
refer to it, much more emphasis was placed on examining the plausibility of con­
clusions about whether a particular relationship was likely to be causal in the 
unique research context in which it was tested. In this book, methods for study­
ing external validity now receive the extensive attention that our past work gave 
to internal validity. 

A second difference is that we have had to grapple with recent philosophy of 
science that questions some of the most important pillars on which our received 
scientific logic stands, especially as concerns the possibility of objectivity and the 
fallibility of both induction and deduction as ways of acquiring certain knowl~ 
edge. Also relevant are the implications of many descriptive findings from meta­
science (the systematic study of the history, sociology, psychology, and philosophy 
of science) that illustrate the high frequency with which scientific practice deviates 
from the preferred scientific logic of the day. Science is conducted by humans and 
is validated by a collectivity of scientists who have cognitive and economic inter­
ests to define, defend, and promote. So even more than its predecessors, this book 
assumes panfallibility, the total and inevitable absence of certain knowledge from 
the methods social scientists use. But we do not throw in the towel because of this 
belief, nor do we counsel that "anything goes." The fallible nature of knowledge 
need not entail either worthlessness (i.e., if it's not perfect, it's worthless) or strong 
methodological relativism (that no method ever has any privileged status over any 
other for any purpose). Rather, we defend the beliefs that some causal statements 
are better warranted than others and that logic and craft experience in science in­
dicate that some practices are often (but not always) superior to others for causal 
purposes, though not necessarily for other purposes. 

A third difference concerns the emphasis placed on design elements rather than 
on designs, especially when considering experimental studies without random as­
signment to treatment conditions. The scientific practice most often associated 
with causal research is the experiment, which in all its many forms is the main fo­
cus of this book. Today, experimentation refers to a systematic study designed to 
examine the consequences of deliberately varying a potential causal agent. Exper­
iments require (1) variation in the treatment, (2) posttreatment measures of out­
comes, ( 3) at least one unit on which observation is made, and ( 4) a mechanism for 
inferring what the outcome would have been without treatment-the so-called 
"counterfactual inference" against which we infer that the treatment produced an 
effect that otherwise would not have occurred. We shall see that there are many 
other structural features of experimentation, most of which serve the purpose of 
improving the quality of this counterfactual inference. But as popular as experi­
ments are in the natural sciences, mathematical statistics, medicine, psychology, 
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education, and labor economics, they are not the only form of research that claims 
to justify causal conclusions. Many correlational studies in sociology, political sci­
ence, developmental science, and certain branches of economics rely on causal 
ideas for theory development but do not knowingly use the structures or the for­
mal language of experimentation. Yet we contend that all nonexperimental meth­
ods can be analyzed for the structural design elements that are or are not present 
in them, clarifying the likely strengths and weaknesses they have for inferring 
cause. In describing the structural elements that characterize experimentation and 
in showing how they can be combined to create experimental designs that have not 
been used before, we claim a general utility for thinking in terms of structural de­
sign elements rather than in terms of a finite series of designs. Such designs were 
the centerpiece of the predecessors to this book (Campbell & Stanley, 1963; Cook 
& Campbell, 1979). By focusing on design elements instead, we hope to help read­
ers acquire a set of tools that is flexible enough so that some of them will be rele­
vant for improving causal claims in almost any research context. 

A fourth difference is that this book, unlike Cook and Campbell (1979), does 
not deal so much with the statistical analysis of data. Rather than full chapters of 
statistical detail, we present brief paragraphs or occasional chapter appendices 
about data analysis, couched more at a conceptual level, with infrequent equa­
tions, often placed in footnotes-just enough, we hope, to clarify sorp.e of the es­
sential issues and to refer the reader to more detailed sources. In part, the reason 
for this change is practical. Twenty years ago, accessible descriptions of statistical 
procedures for such methods as time series or nonequivalent control group designs 
were so rare that extended treatment was warranted. Today, however, statistical 
treatments of these matters are widespread at an array of technical levels, so our 
space is better devoted to developments concerning design and generalization. 
However, our reduced attention to statistics also reflects our preference for design 
solutions over statistical solutions for causal inference, for all the reasons previ­
ously cited. 

A fifth difference is that this book includes extended treatment of randomized 
experiments, with three chapters devoted to their logic and design and to practi­
cal problems and solutions in their implementation. Especially in the latter area, 
the past few decades have seen many new developments addressing a host of prob­
lems such as poor treatment implementation, preventing and analyzing artritio~, 
ensuring the integrity of the assignment process, and conducting experiments that 
better address certain ethical and legal matters. These developments promise to 
improve the practicality of randomized experiments. As an added benefit, many 
of them will improve nonrandomized experiments as well. 

A sixth difference is that this book introduces some emendations to the gen­
eral conceptual scheme that has always been the central hallmark of Campbell's 
work over the years, the validity typology. The changes are minor in most respects, 
for we still retain the overall emphasis on four validity types (internal, statistical 
conclusion, construct, and external) and on the centrality of identifying plausible 
threats to validity in practical causal inference. But we have changed the scheme 
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in a number of ways. For example, with statistical conclusion validity, we have 
tried to display a greater sensitivity to the magnitude of an effect than to its sta­
tistical significance. Our thinking on generalization (both external and construct 
validity) now reflects the influence of Cronbach's (e.g., 1982) cogent writings on 
the problems of causal generalization. And we have made minor changes to lists 
of threats to validity. Although many of these changes may be of interest only to 
fellow theorists of experimental methodology, we hope that some of them (for ex­
ample, the increased emphasis on magnitude of effects) will have an impact on the 
practice of experimentation as well. 

Despite these changes, this book retains an overall emphasis on field experi­
mentation, on human behavior in nonlaboratory settings (although much of the 
book will apply to laboratory experiments). In such settings as schools, businesses, 
clinics, hospitals, welfare agencies, and homes, researchers have far from perfect 
control, are typically guests and not royalty, have to negotiate and not command, 
and often must compromise rather than get everything they would like. Some 
compromises cause more worry than others. In particular, field experimenters are 
reluctant to give up all control over the measurement, selection, and treatment 
scheduling process and, especially, over treatment assignment, for causal inference 
is most difficult when individuals completely self-select themselves into groups 
that vary in treatment exposure. However, it is clear that such control is usually a 
subject for negotiation rather than unilateral decision. 

As with all books, the authors owe debts to many people who have helped to 
shape its ideas. Colleagues who gave us raw data with which to create graphs and 
figures include Xavier Ballart (Figure 6.4), Dick Berk (7.5), Robert Gebotys (6.2), 
Janet Hankin (6.3), Lynn McClannahan (6.14), Dick McCleary (6.1, 6.10), Jack 
McKillip (6.13), Steve Mellor (7.3), Mel Mark (7.3), and Clara Riba (6.4). Oth­
ers helped us by reading and criticizing parts or all of the book, by providing ex­
amples to use in it, or by stimulating us to think more about key problems, in­
cluding Mary Battle, Joseph Cappelleri, Laura Dreuth, Peter Grant (and his 
students), John Hetherington, Paul Holland, Karen Kirkhart, Dan Lewis, Ken 
Lichstein, Sue Marcus, Mel Mark, Dick McCleary, Jack McKillip, David Murray, 
Jennifer Owens, Dave Rindskopf, Virgil Sheets, William Trochim, Alan Vaux, 
Steve West (and his students), and Chris Winship. We single out Laura Leviton, 
Scott Maxwell, and Chip Reichardt for providing exceptionally detailed and help­
ful reviews. However, because the book has been in the writing for a decade, mem­
ory for these contributions and influences undoubtedly fails us, and so we apolo­
gize to all those whose names we have inadvertently omitted. 

We acknowledge several organizations for their support of the research and 
preparation of this book. William Shadish's contribution was partially supported by 
a sabbatical award from the Institute for Policy Research at Northwestern Univer­
sity, by a Supplemental Sabbatical Award from the James McKeen Cattell Founda­
tion, by a Professional Development Assignment Award from the University of 
Memphis, and by both the Center for Applied Psychological Research and the psy­
chology department at the University of Memphis. Thomas Cook's contribution 
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was partially funded by fellowships from the Institute for Advanced Study in the Be­
havioral Sciences at Stanford University and from the Max Planck Institute for Hu­
man Development in Berlin. 

Finally, we want to acknowledge the contributions of the third author of this 
book, Donald Thomas Campbell, who passed away in May 1996 when this book 
was only half done. Acknowledging those contributions is no easy task. Clearly, 
they go far beyond the particular writing he did for this book, given how pro­
foundly and broadly his ideas influenced both his colleagues and his students. He 
was the founder of the entire tradition of field experimentation and quasi­
experimentation represented in this book, a tradition that is so closely associated 
with him that we and others often call it Campbellian. Many of the most impor­
tant concepts in this book, such as internal and external validity, threats to valid­
ity and their logic, and quasi-experimentation, were originated and developed by 
him. Many others of his ideas-about the fallibility of knowledge constructions 
("We are cousins to the amoeba, and have received no direct revelations not 
shared with it. How then, indeed, could we know for certain?"), about the fitful 
and haphazard nature of scientific progress ("The fish-scale model of collective 
omniscience"), and about the social nature of the scientific enterprise ("A tribal 
model of the social system vehicle carrying scientific knowledge")-are so much 
a part of our thinking that they appear implicitly throughout the book. Our debt 
to Campbell, both as his colleagues and as his students, is undoubtedly greater 
than we recognize. 

Campbell (e.g., 1988) was fond of a metaphor often used by the philosopher 
and mathematician W. V. Quine, that scientists are like sailors who must repair a 
rotting ship at sea. They trust the great bulk of timbers while they replace a par­
ticularly weak plank. Each of the timbers that they now trust they may, in its turn, 
replace. The proportion of the planks they are replacing to those they treat as 
sound must always be small. Campbell used this metaphor to illustrate the perva­
sive role of trust in science, and the lack of truly firm foundations in science. In 
the spirit of this metaphor, then, the following four lines from Seamus Heaney's 
(1991) poem "The Settle Bed" are an apt summary not only of Campbell's love of 

, Quine's metaphor, but also of Campbell's own contribution to one of the ships of 
science: 

And now this is 'an inheritance'­
Upright, rudimentary, unshiftably planked 
In the long ago, yet willable forward 
Again and again and again. 1 

Alternatively, for those readers whose preferences are more folksy, we close with 
words that Woody Guthrie wrote in the song Another Man's Done Gone, written 
as he anticipated his own death: "I don't know, I may go down or up or anywhere, 

'Excerpt from "The Settle Bed," from Opened Ground: Selected Poems 1966-1998 by Seamus Heaney. Copyright 
© 1998 by Seamus Hea(ley. Reprinted by permission of Farrar, Straus and Giroux, LLC. 
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but I feel like this scribbling might stay." We hope this book helps keep Don's sem­
inal contributions to field experimentation alive for generations to come. 

William R. Shadish 
Memphis, Tennessee 

Thomas D. Cook 
Evanston, Illinois 



Experiments and 
Generalized Causal 

Inference 

Ex-pePi·ment ('ik-sper' g-m:mt): [Middle English from Old French from Latin 
experimentum, from experiri, to try; see per- in Indo-European Roots.] 
n. Abbr. exp., expt. 1. a. A test under controlled conditions that is 
made to demonstrate a known truth, examine the validity of a hypothe­
sis, or determine the efficacy of something previously untried. b. The 
process of conducting such a test; experimentation. 2. An innovative 
act or procedure: "Democracy is only an experiment in government" 
(William Ralph Inge). 

Cause (koz): [Middle English from Old French from Latin causa, reason, 
purpose.] n. 1. a. The producer of an effect, result, or consequence. 
b. The one, such as a persort, an event, or a condition, that is responsi­
ble for an action or a result. v. 1. To be the cause of or reason for; re­
sult in. 2. To bring about or compel by authority or force. 

T
C? M~ historians and philosop~ers; .the increased emphasis on experim~nta­
twn m the 16th and 17th centunes marked the emergence bf modern sc1ence 
from its roots in natural philosophy (Hacking, 1983). Drake (1981) cites 

Galileo's 1612 treatise Bodies That Stay Atop Water, or Move in It as ushering in 
modern experimental science, but eadier claims can be made favoring William 
Gilbert's 1600 study On the Loadstone and Magnetic Bodies, Leonardo da Vinci's 
(1452-1519) many investigations, and perhaps even the 5th-century B.C. philoso­
pher Empedocles, who used various empirical demonstrations to argue against 
Parmenides (Jones, 1969a, 1969b). In the everyday sense of the term, humans 
have been experimenting with different ways of doing things from the earliest mo­
ments of their history. Such experimenting is as natural a part of our life as trying 
a new recipe or a different way of starting campfires. 
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However, the scientific revolution of the 17th century departed in three ways 
from the common use of observation in natural philosophy at that time. First, it in­
creasingly used observation to correct errors in theory. Throughout history, natu­
ral philosophers often used observation in their theories, usually to win philo­
sophical arguments by finding observations that supported their theories. 
However, they still subordinated the use of observation to the practice of deriving 
theories from "first principles," starting points that humans know to be true by our 
nature or by divine revelation (e.g., the assumed properties of the four basic ele­
ments of fire, water, earth, and air in Aristotelian natural philosophy). According 
to some accounts, this subordination of evidence to theory degenerated in the 17th 
century: "The Aristotelian principle of appealing to experience had degenerated 
among philosophers into dependence on reasoning supported by casual examples 
and the refutation of opponents by pointing to apparent exceptions not carefully 
examined" (Drake, 1981, p. xxi). When some 17th-century scholars then began to 
use observation to correct apparent errors in theoretical and religious first princi­
ples, they came into conflict with religious ~r philosophical authorities, as in the 
case of the Inquisition's demands that Galileo recant his account of the earth re­
volving around the sun. Given such hazards, the fact that the new experimental sci­
ence tipped the balance toward observation and away from dogma is remarkable. 
By the time Galileo died, the role of systematic observation was firmly entrenched 
as a central feature of science, and it has remained so ever since (Harre, 1981). 

Second, before the 17th century, appeals to experience were usually based on 
passive observation of ongoing systems rather than on observation of what hap­
pens after a system is deliberately changed. After the scientific revolution in the 
17th century, the word experiment (terms in boldface in this book are defined in 
the Glossary) came to connote taking a deliberate action fqllowed by systematic 
observation of what occurred afterward. As Hacking (1983) noted of Francis Ba­
con: "He taught that not only must we observe nature in the raw, but that we must 
also 'twist the lion's tale', that is, manipulate our world in order to learn its se­
crets" (p. 149). Although passive observation reveals much about the world, ac­
tive manipulation is required to discover some of the world's,regularities and pos­
sibilities (Greenwood, 1989). As a mundane example, stainless steel does not 
occur naturally; humans must manipulate it into existence. Experimental science 
came to be concerned with observing the effects of such manipulations. 

Third, early experimenters realized the desirability of controlling extraneous 
influences that might limit or bias observation. So telescopes were carried to 
higher points at which the ait was clearer, the glass for microscopes was ground 
ever more accurately, and scientists constructed laboratories in which it was pos­
sible to use walls to keep out potentially biasing ether waves and to use (eventu· 
ally sterilized) test tubes to keep out dust or bacteria. At first, these controls were 
developed for astronomy, chemistry, and physics, the natural sciences in which in­
'terest in science first bloomed. But when scientists started to use experiments in 
areas such as public health or education, in which extraneous influences are 
harder to control (e.g., Lind, 1753), they found that the controls used in natural 
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science in the laboratory worked poorly in these new applications. So they devel­
oped new methods of dealing with extraneous influence, such as random assign­
ment (Fisher, 1925) or adding a nonrandomized control group (Coover & Angell, 
1907). As theoretical and observational experience accumulated across these set­
tings and topics, more sources of bias were identified and more methods were de­
veloped to cope with them (Dehue, 2000). 

Today, the key feature common to all experiments is still to deliberately vary 
something so as to discover what happens to something else later-to discover the 
effects of presumed causes. As laypersons we do this, for example, to assess what 
happens to our blood pressure if we exercise more, to our weight if we diet less, 
or to our behavior if we read a self-help book. However, scientific experimenta­
tion has developed increasingly specialized substance, language, and tools, in­
cluding the practice of field experimentation in the social sciences that is the pri­
mary focus of this book. This chapter begins to explore these matters by 
( 1) discussing the nature of causation that experiments test, ( 2) explaining the spe­
cialized terminology (e.g., randomized experiments, quasi-experiments) that de­
scribes social experiments, (3) introducing the problem of how to generalize 
causal connections from individual experiments, and (4) briefly situating the ex­
periment within a larger literature on the nature of science. 

EXPERIMENTS AND CAUSATION 

A sensible discussion of experiments requires both a vocabulary for talking about 
causation and an understanding of key concepts that underlie that vocabulary. 

Defining Cause, Effect, and Causal Relationships 

Most people intuitively recognize causal relationships in their daily lives. For in­
stance, you may say that another automobile's hitting yours was a cause of the 
damage to your car; that the number of hours you spent studying was a cause of 
your test grades; or that the amount of food a friend eats was a cause of his weight. 
You may even point to more complicated causal relationships, noting that a low 
test grade was demoralizing, which reduced subsequent studying, which caused 
even lower grades. Here the same variable (low grade) can be both a cause and an 
effect, and there can be a reciprocal relationship between two variables (low 
grades and not studying) that cause each other. 

Despite this intuitive familiarity with causal relationships, a precise definition 
of cause and effect has eluded philosophers for centuries. 1 Indeed, the definitions 

1. Our analysis reflects the use of the word causation in ordinary language, not the more detailed discussions of 
cause by philosophers. Readers interested in such detail may consult a host of works that we reference ih this 
chapter, including Cook and Campbell (1979). 
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of terms such as cause and effect depend partly on each other and on the causal 
relationship in which both are embedded. So the 17th-century philosopher John 
Locke said: "That which produces any simple or complex idea, we denote by the 
general name cause, and that which is produced, effect" (1975, p. 324) and also: 
"A cause is that which makes any other thing, either simple idea, substance, or 
mode, begin to be; and an effect is that, which had its beginning from some other 
thing" (p. 325). Since then, other philosophers and scientists have given us useful 
definitions of the three key ideas--cause, effect, and causal relationship-that are 
more specific and that better illuminate how experiments work. We would not de­
fend any of these as the true or correct definition, given that the latter has eluded 
philosophers for millennia; but we do claim that these ideas help to clarify the sci­
entific practice of probing causes. 

Cause 

Consider the cause of a forest fire. We know that fires start in different ways-a 
match tossed from a car, a lightning strike, or a smoldering campfire, for exam­
ple. None of these causes is necessary because a forest fire can start even when, 
say, a match is not present. Also, none of them is sufficient to start the fire. After 
all, a match must stay "hot" long enough to start combustion; it must contact 
combustible material such as dry leaves; there must be oxygen for combustion to 
occur; and the weather must be dry enough so that the leaves are dry and the 
match is not doused by rain. So the match is part of a constellation of conditions 
without which a fire will not result, although some of these conditions can be usu­
ally taken for granted, such as the availability of oxygen. A lighted match is, there­
fore, what Mackie (1974) called an inus condition-"an insufficient but non­
redundant part of an unnecessary but sufficient condition" (p. 62; italics in orig­
inal). It is insufficient because a match cannot start a fire without the other con­
ditions. It is nonredundant only if it adds something fire-promoting that is 
uniquely different from what the other factors in the constellation (e.g., oxygen, 
dry leaves) contribute to starting a fire; after all, it would be harder to say whether 
the match caused the fire if someone else simultaneously tried starting it with a 
cigarette lighter. It is part of a sufficient condition to start a fire in combination 
with the full constellation of factors. But that condition is not necessary because 
there are other sets of conditions that can also start fires. 

A research example of an inus condition concerns a new potential treatment 
for cancer. In the late 1990s, a team of researchers in Boston headed by Dr. Judah 
Folkman reported that a new drug called Endostatin shrank tumors by limiting 
their blood supply (Folkman, 1996). Other respected researchers could not repli­
cate the effect even when using drugs shipped to them from Folkman's lab. Scien­
tists eventually replicated the results after they had traveled to Folkman's lab to 
learn how to properly manufacture, transport, store, and handle the drug and how 
to inject it in the right location at the right depth and angle. One observer labeled 
these contingencies the "in-our-hands" phenomenon, meaning "even we don't 
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know which details are important, so it might take you some time to work it out" 
(Rowe, 1999, p. 732). Endostatin was an inus condition. It was insufficient cause 
by itself, and its effectiveness required it to be embedded in a larger set of condi­
tions that were not even fully understood by the original investigators. 

Most causes are more accurately called in us conditions. Many factors are usu­
ally required for an effect to occur, but we rarely know all of them and how they 
relate to each other. This is one reason that the causal relationships we discuss in 
this book are not deterministic but only increase the probability that an effect will 
occur (Eells, 1991; Holland, 1994). It also explains why a given causal relation­
ship will occur under some conditions but not universally across time, space, hu­
man populations, or other kinds of treatments and outcomes that are more or less 
related to those studied. To different degrees, all causal relationships are context 
dependent, so the generalization of experimental effects is always at issue. That is 
why we return to such generalizations throughout this book. 

Effect 

We can better understand what an effect is through a counterfactual model that 
goes back at least to the 18th-century philosopher David Hume (Lewis, 1973, 
p. 556). A counterfactual is something that is contrary to fact. In an experiment, 
we observe what did happen when people received a treatment. The counterfac­
tual is knowledge of what would have happened to those same people if they si­
multaneously had not received treatment. An effect is the difference between what 
did happen and what would have happened. 

We cannot actually observe a counterfactual. Consider phenylketonuria 
(PKU), a genetically-based metabolic disease that causes mental retardation unless 
treated during the first few weeks of life. PKU is the absence of an enzyme that 
would otherwise prevent a buildup of phenylalanine, a substance toxic to the 
nervous system. When a restricted phenylalanine diet is begun early and main­
tained, retardation is prevented. In this example, the cause could be thought of as 
the underlying genetic defect, as the enzymatic disorder, or as the diet. Each im­
plies a different counterfactual. For example, if we say that a restricted phenyl­
alanine diet caused a decrease in PKU-based mental retardation in infants who are 
phenylketonuric at birth, the counterfactual is whatever would have happened 
had these same infants not received a restricted phenylalanine diet. The same logic 
applies to the genetic or enzymatic version of the cause. But it is impossible for 
these very same infants simultaneously to both have and not have the diet, the ge­
netic disorder, or the enzyme deficiency. 

So a central task for all cause-probing research is to create reasonable ap­
proximations to this physically impossible counterfactual. For instance, if it were 
ethical to do so, we might contrast phenylketonuric infants who were given the 
diet with other phenylketonuric infants who were not given the diet but who were 
similar in many ways to those who were (e.g., similar race, gender, age, socioeco­
nomic status, health status). Or we might (if it were ethical) contrast infants who 
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were not on the diet for the first 3 months of their lives with those same infants 
after they were put on the diet starting in the 4th month. Neither of these ap­
proximations is a true counterfactual. In the first case, the individual infants in the 
treatment condition are different from those in the comparison condition; in the 
second case, the identities are the same, but time has passed and many changes 
other than the treatment have occurred to the infants (including permanent dam­
age done by phenylalanine during the first 3 months of life). So two central tasks 
in experimental design are creating a high-quality but necessarily imperfect source 
of counterfactual inference and understanding how this source differs from the 
treatment condition. 

This counterfactual reasoning is fundamentally qualitative because causal in­
ference, even in experiments, is fundamentally qualitative (Campbell, 1975; 
Shadish, 1995a; Shadish & Cook, 1999). However, some of these points have 
been formalized by statisticians into a special case that is sometimes called Rubin's 
Causal Model (Holland, 1986; Rubin, 1974, 1977, 1978, 1986). This book is not 
about statistics, so we do not describe that model in detail (West, Biesanz, & Pitts 
[2000] do so and relate it to the Campbell tradition). A primary emphasis of Ru­
bin's rno<ld is the analysis of cause in experiments, and its basic premises are con­
sistent with those of this book.2 Rubin's model has also been widely used to ana­
lyze causal inference in case-control studies in public health and medicine 
(Holland & Rubin, 1988), in path analysis in sociology (Holland, 1986), and in 
a paradox that Lord (1967) introduced into psychology (Holland & Rubin, 
1983 ); and it has generated many statistical innovations that we cover later in this 
book. It is new enough that critiques of it are just now beginning to appear (e.g., 
Dawid, 2000; Pearl, 2000). What is clear, however, is that Rubin's is a very gen­
eral model with obvious and subtle implications. Both it and the critiques of it are 
required material for advanced students and scholars of cause-probing methods. 

Causal Relationship 

How do we know if cause and effect are related? In a classic analysis formalized 
by the 19th-century philosopher John Stuart Mill, a causal relationship exists if 
(1) the cause preceded the effect, (2) the cause was related to the effect, and (3) we 
can find no plausible alternative explanation for the effect other than the cause. 
These three.characteristics mirror what happens in experiments in which (1) we 
manipulate the presumed cause and observe an outcome afterward; (2) we see 
whether variation in the cause is related to variation in the effect; and ( 3) we use 
various methods during the experiment to reduce the plausibility of other expla­
nations for the effect, along with ancillary methods to explore the plausibility of 
those we cannot rule out (most of this book is about methods for doing this). 

2. However, Rubin's model is not intended to say much about the matters of causal generalization that we address 
in this book. 
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Hence experiments are well-suited to studying causal relationships. No other sci­
entific method regularly matches the characteristics of causal relationships so well. 
Mill's analysis also points to the weakness of other methods. In many correlational 
studies, for example, it is impossible to know which of two variables came first, 
so defending a causal relationship between them is precarious. Understanding this 
logic of causal relationships and how its key terms, such as cause and effect, are 
defined helps researchers to critique cause-probing studies. 

Causation, Correlation, and Confounds 

A well-known maxim in research is: Correlation does not prove causation. This is 
so because we may not know which variable came first nor whether alternative ex­
planations for the presumed effect exist. For example, suppose income and educa­
tion are correlated. Do you have to have a high income before you can afford to pay 
for education, or do you first have to get a good education before you can get a bet­
ter paying job? Each possibility may be true, and so both need investigation. But un­
til those investigations are completed and evaluated by the scholarly community, a 
simple correlation does not indicate which variable came first. Correlations also do 
little to rule out alternative explanations for a relationship between two variables 
such as education and income. That relationship may not be causal at all but rather 
due to a third variable (often called a confound), such as intelligence or family so­
cioeconomic status, that causes both high education and high income. For example, 
if high intelligence causes success in education and on the job, then intelligent peo­
ple would have correlated education and incomes, not because education causes in­
come (or vice versa) but because both would be caused by intelligence. Thus a cen­
tral task in the study of experiments is identifying the different kinds of confounds 
that can operate in a particular research area and understanding the strengths and 
weaknesses associated with various ways of dealing with them. 

Manipulable and Nonmanipulable Causes 

In the intuitive understanding of experimentation that most people have, it makes 
sense to say, "Let's see what happens if we require welfare recipients to work"; but 
it makes no sense to say, "Let's see what happens if I change this adult male into a 
three-year-old girl." And so it is also in scientific experiments. Experiments explore 
the effects of things that can be manipulated, such as the dose of a medicine, the 
amount of a welfare check, the kind or amount of psychotherapy, or the number 
of children in a classroom. Nonmanipulable events (e.g., the explosion of a super­
nova) or attributes (e.g., people's ages, their raw genetic material, or their biologi­
cal sex) cannot be causes in experiments because we cannot deliberately vary them 
to see what then happens. Consequently, most scientists and philosophers agree 
that it is much harder to discover the effects of nonmanipulable causes. 
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To be clear, we are not arguing that all causes must be manipulable-only that 
experimental causes must be so. Many variables that we correctly think of as causes 
are not directly manipulable. Thus it is well established that a genetic defect causes 
PKU even though that defect is not directly manipulable. We can investigate such 
causes indirectly in nonexperimental studies or even in experiments by manipulat­
ing biological processes that prevent the gene from exerting its influence, as 
through the use of diet to inhibit the gene's biological consequences. Both the non­
manipulable gene and the manipulable diet can be viewed as causes-both covary 
with PKU-based retardation, both precede the retardation, and it is possible to ex­
plore other explanations for the gene's and the diet's effects on cognitive function­
ing. However, investigating the manipulable diet as a cause has two important ad­
vantages over considering the nonmanipulable genetic problem as a cause. First, 
only the diet provides a direct action to solve the problem; and second, we will see 
that studying manipulable agents allows a higher quality source of counterfactual 
inference through such methods as random assignment. When individuals with the 
nonmanipulable genetic problem are compared with persons without it, the latter 
are likely to be different from the former in many ways other than the genetic de­
fect. So the counterfactual inference about what would have happened to those 
with the PKU genetic defect is much more difficult to make. 

Nonetheless, nonmanipulable causes should be studied using whatever means 
are available and seem useful. This is true because such causes eventually help us 
to find manipulable agents that can then be used to ameliorate the problem at 
hand. The PKU example illustrates this. Medical researchers did not discover how 
to treat PKU effectively by first trying different diets with retarded children. They 
first discovered the nonmanipulable biological features of tetarded children af­
fected with PKU, finding abnormally high levels of phenylalanine and its associ­
ated metabolic and genetic problems in those children. Those findings pointed in 
certain ameliorative directions and away from others, leading scientists to exper­
iment with treatments they thought might be effective and practical. Thus the new 
diet resulted from a sequence of studies with different immediate purposes, with 
different forms, and with varying degrees of uncertainty reduction. Some were ex­
perimental, but others were not. 

Further, analogue experiments can sometimes be done on nonmanipulable 
causes, that is, experiments that manipulate an agent that is similar to the cause 
of interest. Thus we cannot change a person's race, but we can chemically induce 
skin pigmentation changes in volunteer individuals-though such analogues do 
not match the reality of being Black every day and everywhere for an entire life. 
Similarly, past events, which are normally nonmanipulable, sometimes constitute 
a natural experiment that may even have been randomized, as when the 1970 
Vietnam-era draft lottery was used to investigate a variety of outcomes (e.g., An­
grist, Imbens, & Rubin, 1996a; Notz, Staw, & Cook, 1971). 

Although experimenting on manipulable causes makes the job of discovering 
their effects easier, experiments are far from perfect means of investigating causes. 
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Sometimes experiments modify the conditions in which testing occurs in a way 
that reduces the fit between those conditions and the situation to which the results 
are to be generalized. Also, knowledge of the effects of manipulable causes tells 
nothing about how and why those effects occur. Nor do experiments answer many 
other questions relevant to the real worfd-for example, which questions are 
worth asking, how strong the need for treatment is, how a cause is distributed 
through society, whether the treatment is ii-hplemented with theoretical fidelity, 
and what value should be attached to the experimental results. 

In addition, ih experiments, we first manipulate a treatment and only then ob­
serve its effects; but in some other studies we first observe an effect, such as AIDS, 
and then search for its cause, whether manipulable or not. Experiments cannot 
help us with that search. Scriven (1976) likens such searches to detective work in 
which a crime has been cdmmitted (e.g., a robbery), the detectives observe a par­
ticular pattern of evidence surrounding the crime (e.g., the robber wore a baseball 
cap and a distinct jacket and used a certain kind of gun), and then the detectives 
search for criminals whose known method of operating (their modus operandi or 
m.o.) includes this pattern. A criminal whose m.o. fits that pattern of evidence 
then becomes a suspect to be investigated further. Epidemiologists use a similar 
method, the case-control design (Ahlborn & Norell, 1990), in which they observe 
a particular health outcome (e.g., an increase in brain tumors) that is not seen in 
another group and then attempt to identify associated causes (e.g., increased cell 
phone use). Experiments do not aspire to answer all the kinds of questions, not 
even all the types of causal questiorl~; that social scientists ask. 

Causal Description and Causal Explanation 

The unique strength of experimentation is in describing the consequences attrib­
utable to deliberately varying a treatment. We call this causal description. In con­
trast, experiments do less well in clarifying the mechanisms through which and 
the conditions under which that causal relationship holds-what we call causal 
explanation. For example, most children very quickly learn the descriptive causal 
relationship between flicking a light switch and obtaining illumination in a room. 
However, few children (or eveh adults) can fully explain why that light goes on. 
To do so, they would have to decompose the treatment (the act of flicking a light 
switch) into its causally efficacious features (e.g., closing an insulated circti#) and 
its nonessential features (e.g., whether the switch is thrown by hand or a motion 
detector). They would have to do the same for the· effect (either incandescent or 
fluorescent light can be produced, but light will still be produced whether the 
light fixture is recessed or not). For full explanation, they would then have to 
show how the causally efficacious parts of the treatment influence the causally 
affected parts of the outcome through identified mediating processes (e.g., the 
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passage of electricity through the circuit, the excitation of photons).3 Clearly, the 
cause of the light going on is a complex cluster of many factors. For those philoso­
phers who equate cause with identifying that constellation of variables that nec­
essarily, inevitably, and infallibly results in the effect (Beauchamp, 1974), talk of 
cause is not warranted until everything of relevance is khown. For them, there is 
no causal description without causal explanation. Whatever the philosophic mer­
its of their position, though, it is not practical to expect much current social sci­
ence to achieve such complete explanation. 

The practical importance of causal explanation is brought home when the 
switch fails to make the light go on and when replacing the light bulb (another 
easily learned manipulation) fails to solve the problem. Explanatory knowledge 
then offers clues about how to fix the problem-for example, by detecting andre­
pairing a short circuit. Or if we wanted to create illumination in a place without 
lights and we had explanatory knowledge, we would know exactly which features 
of the cause-and-effect relationship are essential to create light and which are ir­
relevant. Our explanation might tell us that there must be a source of electricity 
but that that source could take several different molar forms, such as a battery, a 
generator, a windmill, or a solar array. There must also be a switch mechanism to 
close a circuit, but this could also take many forms, including the touching of two 
bare wires or even a motion detector that trips the switch when someone enters 
the room. So causal explanation is an important route to the generalization of 
causal descriptions because it tells us which features of the causal relationship are 
essential to transfer to other situations. 

This benefit of causal explanation helps elucidate its priority and prestige in 
all sciences and helps explain why, once a novel and important causal relationship 
is discovered, the bulk of basic scientific effort turns toward explaining why and 
how it happens. Usually, this involves decomposing the cause into its causally ef­
fective parts, decomposing the effects into its causally affected parts, and identi­
fying the processes through which the effective causal parts influence the causally 
affected outcome parts. 

These examples also show the close parallel between descriptive and explana­
tory causation and molar and molecular causation.4 Descriptive causation usually 
concerns simple bivariate relationships between molar treatments and molar out­
comes, molar here referring to a package that consists of many different parts. For 
instance, we may find that psychotherapy decreases depression, a simple descrip­
tive causal relationship between a molar treatment package and a molar outcome. 
However, psychotherapy consists of such parts as verbal interactions, placebo-

3. However, the full explanation a physicist would offer might be quite different from this electrician's 
explanation, perhaps invoking the behavior of subparticles. This difference indicates just how complicated is the 
notion of explanation and how it can quickly become quite complex once one shifts levels of analysis. 

4. By molar, we mean something taken as a whole rather than in parts. An analogy is to physics, in which molar 
might refer to the properties or motions of masses, as distinguished from those of molecules or ~toms that make up 
those masses. 
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generating procedures, setting characteristics, time constraints, and payment for 
services. Similarly, many depression measures consist of items pertaining to the 
physiological, cognitive, and affective aspects of depression. Explanatory causation 
breaks these molar causes and effects into their molecular parts so as to learn, say, 
that the verbal interactions and the placebo features of therapy both cause changes 
in the cognitive symptoms of depression, but that payment for services does not do 
so even though it is part of the molar treatment package. 

If experiments are less able to provide this highly-prized explanatory causal 
knowledge, why are experiments so central to science, especially to basic social sci­
ence, in which theory and explanation are often the coin of the realm? The answer is 
that the dichotomy between descriptive and explanatory causation is less clear in sci­
entific practice than in abstract discussions about causation. First, many causal ex­
planations consist of chains of descriptive causal links in which one event causes the 
next. Experiments help to test the links in each chain. Second, experiments help dis­
tinguish between the validity of competing explanatory theories, for example, by test­
ing competing mediating links proposed by those theories. Third, some experiments 
test whether a descriptive causal relationship varies in strength or direction under 
Condition A versus Condition B (then the condition is a moderator variable that ex­
plains the conditions under which the effect holds). Fourth, some experiments add 
quantitative or qualitative observations of the links in the explanatory chain (medi­
ator variables) to generate and study explanations for the descriptive causal effect. 

Experiments are also prized in applied areas of social science, in which the 
identification of practical solutions to social problems has as great or even greater 
priority than explanations of those solutions. After all, explanation is not always 
required for identifying practical solutions. Lewontin (1997) makes this point 
about the Human Genome Project, a coordinated multibillion-dollar research 
program to map the human genome that it is hoped eventually will clarify the ge­
netic causes of diseases. Lewontin is skeptical about aspects of this search: 

What is involved here is the difference between explanation and intervention. Many 
disorders can be explained by the failure of the organism to make a normal protein, a 
failure that is the consequence of a gene mutation. But intervention requires that the 
normal protein be provided at the right place in the right cells, at the right time and in 
the right amount, or else that an alternative way be found to provide normal cellular 
function. What is worse, it might even be necessary to keep the abnormal protein away 
from the cells at critical moments. None of these objectives is served by knowing the 
DNA sequence of the defective gene. (Lewontin, 1997, p. 29) 

Practical applications are not immediately revealed by theoretical advance. In­
stead, to reveal them may take decades of follow-up work, including tests of sim­
ple descriptive causal relationships. The same point is illustrated by the cancer 
drug Endostatin, discussed earlier. Scientists knew the action of the drug occurred 
through cutting off tumor blood supplies; but to successfully use the drug to treat 
cancers in mice required administering it at the right place, angle, and depth, and 
those details were not part of the usual scientific explanation of the drug's effects. 
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In the end, then, causal descriptions and causal explanations are in delicate bal­
ance in experiments. What experiments do best is to improve causal descriptions; 
they do less well at explaining causal relationships. But most experiments can be 
designed to provide better explanations than is typically the case today. Further, in 
focusing on causal descriptions, experiments often investigate molar events that 
may be less strongly related to outcomes than are more molecular mediating 
processes, especially those processes that are closer to the outcome in the explana­
tory chain. However, many causal descriptions are still dependable and strong 
enough to be useful, to be worth making the building blocks around which im­
portant policies and theories are created. Just consider the dependability of such 
causal statements as that school desegregation causes white flight, or that outgroup 
threat causes ingroup cohesion, or that psychotherapy improves mental health, or 
that diet reduces the retardation due to PKU. Such dependable causal relationships 
are useful to policymakers, practitioners, and scientists alike. 

MODERN DESCRIPTIONS OF EXPERIMENTS 

Some of the terms used in describing modern experimentation (see Table 1.1) are 
unique, clearly defined, and consistently used; others are blurred and inconsis­
tently used. The common attribute in all experiments is control of treatment 
(though control can take many different forms). So Mosteller (1990, p. 225) 
writes, "In an experiment the investigator controls the application of the treat­
ment"; and Yaremko, Harari, Harrison, and Lynn (1986, p. 72) write, "one or 
more independent variables are manipulated to observe their effects on one or 
more dependent variables." However, over time many different experimental sub­
types have developed in response to the needs and histories of different sciences 
(Winston, 1990; Winston & Blais, 1996). 

TABLE 1.1 The Vocabulary of Experiments 

Experiment: A study in which an intervention is deliberately introduced to observe its effects. 

Randomized Experiment: An experiment in which units are assigned to receive the treatment or 
an alternative condition by a random process such as the toss of a coin or a table of 
random numbers. 

Quasi-Experiment: An experiment in which units are not assigned to conditions randomly. 

Natural Experiment: Not really an experiment because the cause usually cannot be 

manipulated; a study that contrasts a naturally occurring event such as an earthquake with 
a comparison condition. 

Correlational Study: Usually synonymous with nonexperimental or observational study; a study 
that simply observes the size and direction of a relationship among variables. 
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Randomized Experiment 

The most clearly described variant is the randomized experiment, widely credited 
to Sir Ronald Fisher (1925, 1926). It was first used in agriculture but later spread 
to other topic areas because it promised control over extraneous sources of vari­
ation without requiring the physical isolation of the laboratory. Its distinguishing 
feature is clear and important-that the various treatments being contrasted (in­
cluding no treatment at all) are assigned to experimental units5 by chance, for ex­
ample, by coin toss or use of a table of random numbers. If implemented correctly, 
random assignment creates two or more groups of units that are probabilistically 
similar to each other on the average. 6 Hence, any outcome differences that are ob­
served between those groups at the end of a study are likely to be due to treatment, 
not to differences between the groups that already existed at the start of the study. 
Further, when certain assumptions are met, the randomized experiment yields an 
estimate of the size of a treatment effect that has desirable statistical properties, 
along with estimates of the probability that the true effect falls within a defined 
confidence interval. These features of experiments are so highly prized that in a 
research area such as medicine the randomized experiment is often referred to as 
the gold standard for treatment outcome research? 

Closely related to the randomized experiment is a more ambiguous and in­
consistently used term, true experiment. Some authors use it synonymously ~ith 
randomized experiment (Rosenthal & Rosnow, 1991). Others use it more gener­
ally to refer to any study in which an independent variable is deliberately manip­
ulated (Yaremko et al., 1986) and a dependent variable is assessed. We shall not 
use the term at all given its ambiguity and given that the modifier true seems to 
imply restricted claims to a single correct experimental method. 

Quasi-Experiment 

Much of this book focuses on a class of designs that Campbell and Stanley 
(1963) popularized as quasi-experiments. 8 Quasi-experiments share with all other 

5. Units can be people, animals, time periods, institutions, or almost anything else. Typically in field 
experimentation they are people or some aggregate of people, such as classrooms or work sites. In addition, a little 
thought shows that random assignment of units to treatments is the same as assignment of treatments to units, so 
these phrases are frequently used interchangeably. 

6. The word probabilistically is crucial, as is explained in more detail in Chapter 8. 

7. Although the term randomized experiment is used this way consistently across many fields and in this book, 
statisticians sometimes use the closely related term random experiment in a different way to indicate experiments 
for which the outcome cannot be predicted with certainty (e.g., Hogg & Tanis, 1988). 

8. Campbell (1957) first called these compromise designs but changed terminology very quickly; Rosenbaum 
(1995a) and Cochran (1965) refer to these as observational studies, a term we avoid because many people use it to 

refer to correlational or nonexperimental studies, as well. Greenberg and Shroder (1997) use quasi-experiment to 
refer to studies that randomly assign groups (e.g., communities) to conditions, but we would consider these group­
randomized experiments (Murray, 1998). 
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experiments a similar purpose-to test descriptive causal hypotheses about manip­
ulable causes-as well as many structural details, such as the frequent presence of 
control groups and pretest measures, to support a counterfactual inference about 
what would have happened in the absence of treatment. But, by definition, quasi­
experiments lack random assignment. Assignment to conditions is by means of self­
selection, by which units choose treatment for themselves, or by means of adminis­
trator selection, by which teachers, bureaucrats, legislators, therapists, physicians, 
or others decide which persons should get which treatment. However, researchers 
who use quasi-experiments may still have considerable control over selecting and 
scheduling measures, over how nonrandom assignment is executed, over the kinds 
of comparison groups with which treatment groups are compared, and over some 
aspects of how treatment is scheduled. As Campbell and Stanley note: 

There are many natural social settings in which the research person can introduce 
something like experimental design into his scheduling of data collection procedures 
(e.g., the when and to whom of measurement), even though he lacks the full control 
over the scheduling of experimental stimuli (the when and to whom of exposure and 
the ability to randomize exposures) which makes a true experiment possible. Collec­
tively, such situations can be regarded as quasi-experimental designs. (Campbell & 
Stanley, 1963, p. 34) 

In quasi-experiments, the cause is manipulable and occurs before the effect is 
measured. However, quasi-experimental design features usually create less com­
pelling support for counterfactual inferences. For example, quasi-experimental 
control groups may differ from the treatment condition in many systematic (non­
random) ways other than the presence of the treatment. Many of these ways could 
be alternative explanations for the observed effect, and so researchers have to 
worry about ruling them out in order to get a more valid estimate of the treatment 
effect. By contrast, with random assignment the researcher does not have to think 
as much about all these alternative explanations. If correctly done, random as­
signment makes most of the alternatives less likely as causes of the observed 
treatment effect at the start of the study. 

In quasi-experiments, the researcher has to enumerate alternative explanations 
one by one, decide which are plausible, and then use logic, design, and measure­
ment to assess whether each one is operating in a way that might explain any ob­
served effect. The difficulties are that these alternative explanations are never com­
pletely enumerable in advance, that some of them are particular to the context 
being studied, and that the methods needed to eliminate them from contention will 
vary from alternative to alternative and from study to study. For example, suppose 
two nonrandornly formed groups of children are studied, a volunteer treatment 
group that gets a new reading program and a control group of nonvolunteers who 
do not get it. If the treatment group does better, is it because of treatment or be­
cause the cognitive development of the volunteers was increasing more rapidly even 
before treatment began? (In a randomized experiment, maturation rates would 
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have been probabilistically equal in both groups.) To assess this alternative, there­
searcher might add multiple pretests to reveal maturational trend befor~ the treat­
ment, and then compare that trend with the trend after treatment. 

Another alternative explanation might be that the nonrandom control group in­
cluded more disadvantaged children who had less access to books in their homes or 
who had parents who read to thern less often. (In a randomized experiment, both 
groups would have had similar proportions of such children.) To assess this alter­
native, the experimenter may measure the number of books at home, parental time 
spent reading to children, and perhaps trips to libraries. Then the researcher would 
see if these variables differed across treatment and control groups in th~ hypothe­
sized direction that could explain the observed treatment effect. Obviously, as the 
number of plausible alternative explanations increases, the design of the quasi­
experiment becomes more intellectually demanding and complex-especially be­
cause we are never certain we have identified all the alternative explanations. The 
efforts of the quasi-experimenter start to look like attempts to bandage a wound 
that would have been less severe if random assignment had been used initially. 

The ruling out of alternative hypotheses is closely related to a falsificationist 
logic popularized by Popper (1959). Popper noted how hard it is to be sure that a 
general conclusion (e.g., all swans are white) is correct based on a limited set of 
observations (e.g., all the swans I've seen were white). After all, future observa­
tions may change (e.g., someday I may see a black swan). So confirmation is log­
ically difficult. By contrast, observing a disconfirming instance (e.g., a black swan) 
is sufficient, in Popper's view, to falsify the general conclusion that all swans are 
white. Accordingly, Popper urged scientists to try deliberately to falsify the con­
clusions they wish to draw rather than only to seek informatimi corroborating 
them. Conclusions that withstand falsification are retained in scientific books or 
journals and treated as plausible until better evidence comes along. Quasi­
experimentation is falsificationist in that it requires experimenters to identify a 
causal claim and then to generate and examine plausible alternative explanations 
that might falsify the claim. 

However, such falsification can never be as definitive as Popper hoped. Kuhn 
(1962) pointed out that falsification depends on two assumptions that can never 
be fully tested. The first is that the causal claim is perfectly specified. But that is 
never the case. So many features of both the claim and the test of the claim are 
debatable-for example, which outcome is of interest, how it is measured, the 
conditions of treatment, who needs treatment, and all the many other decisions 
that researchers must make in testing causal relationships. As a result, disconfir­
mation often leads theorists to respecify part of their causal theories. For exam­
ple, they might now specify novel conditions that must hold for their theory to be 
true and that were derived from the apparently disconfirming observations. Sec­
ond, falsification requires measures that are perfectly valid reflections of the the­
ory being tested. However, most philosophers maintain that all observation is 
theory-laden. It is laden both with intellectual nuances specific to the partially 
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unique scientific understandings of the theory held by the individual or group de­
vising the test and also with the experimenters' extrascientific wishes, hopes, 
aspirations, and broadly shared cultural assumptions and understandings. If 
measures are not independent of theories, how can they provide independent the­
ory tests, including tests of causal theories? If the possibility of theory-neutral ob­
servations is denied, with them disappears the possibility of definitive knowledge 
both of what seems to confirm a causal claim and of what seems to disconfirm it. 

Nonetheless; a fallibilist version of falsification is possible. It argues that stud­
ies of causal hypotheses can still usefully improve understanding of general trends 
despite ignorance of all the contingencies that might pertain to those trends. It ar­
gues that causal studies are useful even if we have to respecify the initial hypoth­
esis repeatedly to accommodate new contingencies and new understandings. Af­
ter all, those respecifications are usually minor in scope; they rarely involve 
wholesale overthrowing of general trends in favor of completely opposite trends. 
Fallibilist falsification also assumes that theory-neutral observation is impossible 
but that observations can approach a more factlike status when they have been re­
peatedly made ,across different theoretical conceptions of a construct, across mul­
tiple kinds bf 'tn:easurements, and at multiple times. It also assumes that observa­
tions are imbued with multiple theories, not just one, and that different 
operational procedures do not shate the same multiple theories. As a result, ob­
servations that repeatedly occur despite different theories being built into them 
have a special factlike status even if they can never be fully justified as completely 
theory-neutral facts. In summary, then, fallible falsification is more than just see­
ing whether .observations disconfirm a prediction. It involves discovering and 
judging the worth of ancillary assumptions about the restricted specificity of the 
causal hypothesis under test and also about the heterogeneity of theories, view­
points, settings, and times built into the measures of the cause and effect and of 
any contingencies modifying their relationship. 

It is neither feasible nor desirable to rule out all possible alternative interpre­
tations of a causal relationship. Instead, only plausible alternatives constitute the 
major focus. This serves partly to keep matters tractable because the number of 
possible alternatives is endless. It also recognizes that many alternatives have no 
serious empirical or experiential support and so do not warrant special attention. 
However, the lack of support can sometimes be deceiving. For example, the cause 
of stomach ulcers was long thought to be a combination of lifestyle (e.g., stress) 
and excess acid production. Few scientists seriously thought that ulcers were 
caused by a pathogen (e.g., virus, germ, bacteria) because it was assumed that an 
acid-filled stomach would destroy all living organisms. However, in 1982 Aus­
tralian researchers Barry Marshall and Robin Warren discovered spiral-shaped 
bacteria, later named Helicobacter pylori (H. pylori), in ulcer patients' stomachs. 
With this discovery, the previously possible but implausible became plausible. By 
1994, a U.S. National Institutes of Health Consensus Development Conference 
concluded that H. pylori was the major cause of most peptic ulcers. So labeling ri-

-~~·~-----=-~-=-~~~~~--------------------------------------~· 
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val hypotheses as plausible depends not just on what is logically possible but on 
social consensus, shared experience and, empirical data. 

Because such factors are often context specific, different substantive areas de­
velop their own lore about which alternatives are important enough to need to be 
controlled, even developing their own methods for doing so. In early psychology, 
for example, a control group with pretest observations was invented to control for 
the plausible alternative explanation that, by giving practice in answering test con­
tent, pretests would produce gains in performance even in the absence of a treat­
ment effect (Coover & Angell, 1907). Thus the focus on plausibility is a two-edged 
sword: it reduces the range of alternatives to be considered in quasi-experimental 
work, yet it also leaves the resulting causal inference vulnerable to the discovery 
that an implausible-seeming alternative may later emerge as a likely causal agent. 

Natural Experiment 

The term natural experiment describes a naturally-occurring contrast between a 
treatment and a comparison condition (Fagan, 1990; Meyer, 1995; Zeisel, 1973). 
Often the treatments are not even potentially manipulable, as when researchers 
retrospectively examined whether earthquakes in California caused drops in prop­
erty values (Brunette, 1995; Murdoch, Singh, & Thaye.t; 1993). Yet plausible 
causal inferences about the effects of earthquakes are easy to construct and de­
fend. After all, the earthquakes occurred before the observations on property val­
ues, and it is easy to see whether earthquakes are related to property values. A use­
ful source of counterfactual inference can be constructed by examining property 
values in the same locale before the earthquake or by studying similar locales that 
did not experience an earthquake during the same time. If property values 
dropped right after the earthquake in the earthquake condition but not in the com­
parison condition, it is difficult to find an alternative explanation for that drop. 

Natural experiments have recently gained a high profile in economics. Before 
the 1990s economists had great faith in their ability to produce valid causal in­
ferences through statistical adjustments for initial nonequivalence between tre,at­
ment and cop_trol groups. But two studies onthe effects of job training BfQgra~s 
showed that those adjustments produced estimates that were not close·to thdse 
generated from a randomized experiment and were unstable across tests of the 
model's sensitivity (Fraker & -Maynard, 1987; LaLonde, 1986). Hence, in their 
search for alternative methods, many economists came to do natural experime'ri:ts, 
such as the economic study of the effects that occurred in the Miami job market 
when many prisoners were released from Cuban jails and allowed to (lOme to the 
United States (Card, 1990). They assume that the release of prisoners (or the tim­
ing of an earthquake) is independent of the ongoing processes that usually affect 
unemployment rates (or housing values). Later we explore the validity of this 
assumption-of its desirability there can be little question. 



18 I L EXPERIMENTS AND GENERALIZED CAUSAL INFERENCE 

Nonexperimental Designs 

The terms correlational design, passive observational design, and nonexperimental 
design refer to situations in wh,~h a presumed cause and effect are identified and 
measured but in which other structural features of experiments are missing. Ran­
dom assignment is not part of the design, nor are such design elements as pretests 
and control groups from which researchers might construct a useful counterfactual 
inference. Instead, reliance is placed on measuring alternative explanations indi­
vidually and then statistically controlling for them. In cross-sectional studies in 
which all the data are gathered on the respondents at one time, the researcher may 
not even know if the cause precedes the effect. When these studies are used for 
causal purposes, the missing design features can be problematic unless much is al­
ready known about which alternative interpretations are plausible, unless those 
that are plausible can be validly measured, and unless the substantive model used 
for statistical adjustment is well-specified. These are difficult conditions to meet in 
the real world of research practice, and therefore many commentators doubt the 
potential of such designs to support strong causal inferences in most cases. 

EXPERIMENTS AND THE GENERALIZATION OF 
CAUSAL CONNECTIONS 

The strength of experimentation is its ability to illuminate causal inference. The 
weakness of experimentation is doubt about the extent to which that causal rela­
tionship generalizes. We hope that an innovative feature of this book is its focus 
on generalization. Here we introduce the general issues that are expanded in later 
chapters. 

Most Experiments Are Highly Local But Have 
General Aspirations 

Most experiments are highly localized and particularistic. They are almost always 
conducted in a restricted range of settings, often just one, with a particular ver­
sion of one type of treatment rather than, say, a sample of all possible versions. 
Usually, they have several measures-each with theoretical assumptions that are 
different from those present in other measures-but far from a complete set of all 
possible measqres. Each experiment nearly always uses a convenient sample of 
people rath~r than one that reflects a well-described population; and it will in­
evitably be conducted at a particular point in time that rapidly becomes history. 

Yet readers of experimental results are rarely concerned with what happened 
in that particular, past, local study. Rather, they usually aim to learn either about 
theoretical constructs of interest or about a larger policy. Theorists often want to 
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connect experimental results to theories with broad conceptual applicability, 
which requires generalization at the linguistic level of constructs rather than at the 
level of the operations used to represent these constructs in a given experiment. 
They nearly always want to generalize to more people and settings than are rep­
resented in a single experiment. Indeed, the value assigned to a substantive theory 
usually depends on how broad a range of phenomena the theory covers. Similarly, 
policymakers may be interested in whether a causal relationship would hold 
(probabilistically) across the many sites at which it would be implemented as a 
policy, an inference that requires generalization beyond the original experimental 
study context. Indeed, all human beings probably value the perceptual and cogni­
tive stability that is fostered by generalizations. Otherwise, the world might ap­
pear as a buzzing cacophony of isolated instances requiring constant cognitive 
processing that would overwhelm our limited capacities. 

In defining generalization as a problem, we do not assume that more broadly ap­
plicable results are always more desirable (Greenwood, 1989). For example, physi­
cists who use particle accelerators to discover new elements may not expect that it 
would be desirable to introduce such elements into the world. Similarly, social scien­
tists sometimes aim to demonstrate that an effect is possible and to understand its 
mechanisms without expecting that the effect can be produced more generally. For 
instance, when a "sleeper effect" occurs in an attitude change study involving per­
suasive communications, the implication is that change is manifest after a time delay 
but not immediately so. The circumstances under which this effect occurs tum out to 
be quite limited and unlikely to be of any general interest other than to show that the 
theory predicting it (and many other ancillary theories) may not be wrong (Cook, 
Gruder, Hennigan & Flay, 1979). Experiments that demonstrate limited generaliza­
tion may be just as valuable as those that demonstrate broad generalization. 

Nonetheless, a conflict seems to exist between the localized nature of the causal 
knowledge that individual experiments provide and the more generalized causal 
goals that research aspires to attain. Cronbach and his colleagues (Cronbach et al., 
1980; Cronbach, 1982) have made this argument most forcefully, and their works 
have contributed much to our thinking about causal generalization. Cronbach 
noted that each experiment consists of units that receive the experiences being con­
trasted, of the treatments themselves, of observations made on the units, and of the 
settings in which the study is conducted. Taking the first letter from each of these 
four words, he defined the acronym utos to refer to the "instances on which data 
are collected" (Cronbach, 1982, p. 78)-to the actual people, treatments, measures, 
and settings that were sampled in the experiment. He then defined two problems of 
generalization: ( 1) generalizing to the "domain about which [the] question is asked" 
(p. 79), which he called UTOS; and (2) generalizing to "units, treatments, variables, 
and settings not directly observed" (p. 83), which he called *UTOS.9 

9. We oversimplify Cronbach's presentation here for pedagogical reasons. For example, Cronbach only used capitalS, 
not smalls, so that his system referred only to utoS, not utos. He offered diverse and not always consistent definitions 
of UTOS and *UTOS, in particular. And he does not use the word generalization in the sam~ broad way we do here. 
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Our theory of causal generalization, outlined below and presented in more de­
tail in Chapters 11 through 13, melds Cronbach's thinking with our own ideas 
about generalization from previous works (Cook, 1990, 1991; Cook & Camp­
bell, 1979), creating a theory that is different in modest ways from both of these 
predecessors. Our theory is influenced by Cronbach's work in two ways. First, we 
follow him by describing experiments consistently throughout this book as con­
sisting of the elements of units, treatments, observations, and settings, 10 though 
we frequently substitute persons for units given that most field experimentation is 
conducted with humans as participants. We also often substitute outcome for ob­
servations given the centrality of observations about outcome when examining 
causal relationships. Second, we acknowledge that researchers are often interested 
in two kinds of generalization about each of these five elements, and that these 
two types are inspired by, but not identical to, the two kinds of generalization that 
Cronbach defined. We call these construct validity generalizations (inferences 
about the constructs that research operations represent) and external validity gen­
eralizations (inferences about whether the causal relationship holds over variation 
in persons, settings, treatment, and measurement variables). 

Construct Validity: Causal Generalization 
as Representation 

The first causal generalization problem concerns how to go from the particular 
units, treatments, observations, and settings on which data are collected to the 
higher order constructs these instances represent. These constructs are almost al­
ways couched in terms that are more abstract than the particular instances sam­
pled in an experiment. The labels may pertain to the individual elements of the ex­
periment (e.g., is the outcome measured by a given test best described as 
intelligence or as achievement?). Or the labels may pertain to the nature of rela­
tionships among elements, including causal relationships, as when cancer treat­
ments are classified as cytotoxic or cytostatic depending on whether they kill tu­
mor cells directly or delay tumor growth by modulating their environment. 
Consider a randomized experiment by Fortin and Kirouac (1976). The treatment 
was a brief educational course administered by several nurses, who gave a tour of 
their hospital and covered some basic facts about surgery with individuals who 
were to have elective abdominal or thoracic surgery 15 to 20 days later in a sin­
gle Montreal hospital. Ten specific. outcome measures were used after the surgery, 
such as an activities of daily living scale and a count of the analgesics used to con­
trol pain. Now compare this study with its likely target constructs-whether 

10. We occasionally refer to time as a separate feature of experiments, following Campbell (1957) and Cook and 
Campbell (1979), because time can cut across the other factors independently. Cronbach did not include time in 
his notational system, instead incorporating time into treatment (e.g., the scheduling of treatment), observations 
(e.g., when measures are administered), or setting (e.g., the historical context of the experiment). 
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patient education (the target cause) promotes physical recovery (the target effect) 
among surgical patients (the target population of units) in hospitals (the target 
universe of settings). Another example occurs in basic research, in which the ques­
tion frequently arises as to whether the actual manipulations and measures used 
in an experiment really tap into the specific cause and effect constructs specified 
by the theory. One way to dismiss an empirical challenge to a theory is simply to 
make the case that the data do not really represent the concepts as they are spec­
ified in the theory. 

Empirical results often force researchers to change their initial understanding 
of what the domain under study is. Sometimes the reconceptualization leads to a 
more restricted inference about what has been studied. Thus the planned causal 
agent in the Fortin and Kirouac (1976) study-patient education-might need to 
be respecified as informational patient education if the information component of 
the treatment proved to be causally related to recovery from surgery but the tour 
of the hospital did not. Conversely, data can sometimes lead researchers to think 
in terms of target constructs and categories that are more general than those with 
which they began a research program. Thus the creative analyst of patient educa­
tion studies might surmise that the treatment is a subclass of interventions that 
function by increasing "perceived control" or that recovery from surgery can be 
treated as a subclass of "personal coping." Subsequent readers of the study can 
even add their own interpretations, perhaps claiming that perceived control is re­
ally just a special case of the even more general self-efficacy construct. There is a 
subtle interplay over time among the original categories the researcher intended 
to represent, the study as it was actually conducted, the study results, and subse­
quent interpretations. This interplay can change the researcher's thinking about 
what the study particulars actually achieved at a more conceptual level, as can 
feedback from readers. But whatever reconceptualizations occur, the first problem 
of causal generalization is always the same: How can we generalize from a sam­
ple of instances and the data patterns associated with them to the particular tar­
get constructs they represent? 

External Validity: Causal Generalization as Extrapolation 

The second problem of generalization is to infer whether a causal relationship 
holds over variations in persons, settings, treatments, and outcomes. For example, 
someone reading the results of an experiment on the effects of a kindergarten 
Head Start program on the subsequent grammar school reading test scores of poor 
African American children in Memphis during the 1980s may want to know if a 
program with partially overlapping cognitive and social development goals would 
be as effective in improving the mathematics test scores of poor Hispanic children 
in Dallas if this program were to be implemented tomorrow. 

This example again reminds us that generalization is not a synonym for 
broader application. Here, generalization is from one city to another city and 
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from one kind of clientele to another kind, but there is no presumption that Dal­
las is somehow broader than Memphis or that Hispanic children constitute a 
broader population than African American children. Of course, some general­
izations are from narrow to broad. For example, a researcher who randomly 
samples experimental participants from a national population may generalize 
(probabilistically) from the sample to all the other unstudied members of that 
same population. Indeed, that is the rationale for choosing random selection in 
the first place. Similarly, when policymakers consider whether Head Start should 
be continued on a national basis, they are not so interested in what happened in 
Memphis. They are more interested in what would happen on the average across 
the United States, as its many local programs still differ from each other despite 
efforts in the 1990s to standardize much of what happens to Head Start children 
and parents. But generalization can also go from the broad to the narrow. Cron­
bach (1982) gives the example of an experiment that studied differences between 
the performances of groups of students attending private and public schools. In 
this case, the concern of individual parents is to know which type of school is bet­
ter for their particular child, not for the whole group. Whether from narrow to 
broad, broad to narrow, or across units at about the same level of aggregation, 
all these examples of external validity questions share the same need-to infer the 
extent to which the effect holds over variations in persons, settings, treatments, 
or outcomes. 

Approaches to Making Causal Generalizations 

Whichever way the causal generalization issue is framed, experiments do not 
seem at first glance to be very useful. Almost invariably, a given experiment uses 
a limited set of operations to represent units, treatments, outcomes, and settings. 
This high degree of localization is not unique to the experiment; it also charac­
terizes case studies, performance monitoring systems, and opportunistically­
administered marketing questionnaires given to, say, a haphazard sample of re­
spondents at local shopping centers (Shadish, 1995b). Even when questionnaires 
are administered to nationally representative samples, they are ideal for repre­
senting that particular population of persons but have little relevance to citizens 
outside of that nation. Moreover, responses may also vary by the setting in which 
the interview took place (a doorstep, a living room, or a work site), by the time 
of day at which it was administered, by how each question was framed, or by the 
particular race, age, and gender combination of interviewers. But the fact that the 
experiment is not alone in its vulnerability to generalization issues does not make 
it any less a problem. So what is it that justifies any belief that an experiment can 
achieve a better fit between the sampling particulars of a study and more general 
inferences to constructs or over variations in persons, settings, treatments, and 
outcomes? 



EXPERIMENTS AND THE GENERALIZATION OF CAUSAL CONNECTIONS I 23 

Sampling and Causal Generalization 

The method most often recommended for achieving this close fit is the use of for­
mal probability sampling of instances of units, treatments, observations, or set­
tings (Rossi, Wright, & Anderson, 1983). This presupposes that we have clearly 
delineated populations of each and that we can sample with known probability 
from within each of these populations. In effect, this entails the random selection 
of instances, to be carefully distinguished from random assignment discussed ear­
lier in this chapter. Random selection involves selecting cases by chance to repre­
sent that population, whereas random assignment involves assigning cases to mul­
tiple conditions. 

In cause-probing research that is not experimental, random samples of indi­
viduals are often used. Large-scale longitudinal surveys such as the Panel Study of 
Income Dynamics or the National Longitudinal Survey are used to represent the 
population of the United States-or certain age brackets within it-and measures 
of potential causes and effects are then related to each other using time lags in 
measurement and statistical controls for group nonequivalence. All this is done in 
hopes of approximating what a randomized experiment achieves. However, cast=s 
of random selection from a broad population followed by random assignment 
from within this population are much rarer (see Chapter 12 for examples). Also 
rare are studies of random selection followed by a quality quasi-experiment. Such 
experiments require a high level of resources and a degree of logistical control that 
is rarely feasible, so many researchers prefer to rely on an implicit set of nonsta­
tistical heuristics for gener!llization that we hope to make more explicit and sys­
tematic in this book. 

Random selection occurs even more rarely with treatments, outcomes, and 
settings than with people. Consider the outcomes observed in an experiment. How 
often are they randomly sampled? We grant that the domain sampling model of 
classical test theory (Nunnally & Bernstein, 1994) assumes that the items used to 
measure a construct have been randomly sampled from a domain of all possible 
items. However, in actual experimental practice few researchers ever randomly 
sample items when constructing measures. Nor do they do so when choosing ma­
nipulations or settings. For instance, many settings will not agree t() be sampled, 
and some of the settings that agree to be randomly sampled will almost certainly 
not agree to be randomly assigned to conditions. For treatments, no definitive list 
of possible treatments usually exists, as is most obvious in areas in which treat­
ments are being discovered and developed rapidly, such as in AIDS research. In 
general, then, random sampling is always desirable, but it is only rarely and con-
tingently feasible. ' 

However, formal sampling methods are not the only option. Two informal, pur­
posive sampling methods are sometimes useful-purposive sampling of heteroge­
neous instances and purposiye sampling of typical instances. ln the former case, the 
aim is to include instances chosen deliberately to reflect diversity on presumptively 
important dimensions, even though the sample is not formally random. In the latter 
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case, the aim is to explicate the kinds of units, treatments, observations, and settings 
to which one most wants to generalize and then to select at least one instance of each 
class that is impressionistically similar to the class mode. Although these purposive 
sampling methods are more practical than formal probability sampling, they are not 
backed by a statistical logic that justifies formal generaliz~tions. Nonetheless, they 
are probably the most commonly used of all sampling methods for facilitating gen­
eralizations. A task we set ourselves in this book is to explicate such methods and to 
describe how they can be used more often than is the case today. 

However, sampling methods of any kind are insufficient to solve either prob­
lem of generalization. Formal probability sampling requires specifying a target 
population from which sampling then takes place, but defining such populations 
is difficult for some targets of generalization such as treatments. Purposive sam­
pling of heterogeneous instances is differentially feasible for different elements in 
a study; it is often more feasible to make measures diverse than it is to obtain di­
verse settings, for example. Purposive sampling of typical instances is often feasi­
ble when target modes, medians, or means are known, but it leaves questions 
about generalizations to a wider range than is typical. Besides, as Cronbach points 
out, most challenges to the causal generalization of an experiment typically 
emerg~ after a study is done. In such cases, sampling is relevant only ifthe in­
stances in the original study were sampled diversely enough to promote responsi­
ble re~nalyses of the data to see if a treatment effect holds across most or all of the 
targets 'about which generalization has been challenged. But packing so many 
sources of variation into a single experimental study is rarely practical and will al­
most certainly conflict with other goals of the experiment. Formal sampling meth­
ods''usually offer only a limited solution to causal generalization problems. A the­
ory of generalized causal inference needs additional tools. 

A Grounded Theory of Causal Generalization 

Practicing scientists routinely make causal generaliz;:ttions in their research, and 
they almost never use formal probability sampling when they do. In this book, we 
present a theory of causql generalization that is grounded in the actual practice of 
science (Matt, Cook, & Shadish, 2000). Although this theory was originally de­
velqped from ideas that were grounded in the construct and external validity lit­
eratures (Cook, 1990, 1991), we have since found that these ideas are common in 
a dtverse literature about scientific gener;:tl~;z;ations (e.g., Abelson, 1995; Campbell 
& Fiske, 1959; Cronbach & Meehl, 1955; Davis, 1994; Locke, 1986; Medin, 
19B9; Messick, 1989, 1995; Rubins, 1994; Willner, 1991; Wilson, Hayward, Tu­
nis, Bass, & Guyatt, 1995). We provide more details about this grounded theory 
in Chapters 11 through 13, but in brief it suggests that scientists make causal gen­
eralizations in their 'York by using five closely related principles: 

~- Surface Similarity. They assess the apparent similarities between study opera­
tions ;1nd the prototypical characteristics of the target of generalization. 
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2. Ruling Out Irrelevancies. They identify those things that are irrelevant because 
they do not change a generalization. 

3. Making Discriminations. They clarify key discriminations that limit 
generalization. 

4. Interpolation and Extrapolation. They make interpolations to unsampled val­
ues within the r'ange of the sampled instances and, much more difficult, they 
explore extrapolations beyond the sampled range. 

5. Causal Explanation. They develop and test explanatory theories about the pat­
tern of effects, causes, and mediational processes that are essential to the trans­
fer of a causal relationship. 

In this book, we want to show how scientists can and do use these five princi­
ples to draw generalized conclusions about a causal connection. Sometimes the 
conclusion is about the higher order constructs to use in describing an obtained 
connection at the sample level. In this sense, these five principles have analogues or 
parallels both in the construct validity literature (e.g., with construct content, with 
convergent and discriminant validity, and with the need for theoretical rationales 
for constructs) and in the cognitive science and philosophy literatures that study 
how people decide whether instances fall into a category (e.g., concerning the roles 
that prototypical characteristics and surface versus deep similarity play in deter­
mining category membership). But at other times, the conclusion about general­
ization refers to whether a connection holds broadly or narrowly over variations 
in persons, settings, treatments, or outcomes. Here, too, the principles have ana­
logues or parallels that we can recognize from scientific theory and practice, as in 
the study of dose-response relationships (a form of interpolation-extrapolation) or 
the appeal to explanatory mechanisms in generalizing from animals to humans (a 
form of causal explanation). 

Scientists use these five principles almost constantly during all phases of re­
search. For example, when they read a published study and wonder if some varia­
tion on the study's particulars would work in their lab, they think about similari­
ties of the published study to what they propose to do. When they conceptualize 
the new study, they anticipate how the instances they plan to study will match the 
prototypical features of the constructs about which they are curious. They may de­
sign their study on the assumption that certain variations will be irrelevant to it but 
that others will point to key discriminations over which the causal relationship 
does not hold or the very character of the constructs changes. They may include 
measures of key theoretical mechanisms to clarify how the intervention works. 
During data analysis, they test all these hypotheses and adjust their construct de­
scriptions to match better what the data suggest happened in the study. The intro­
duction section of their articles tries to convince the reader that the study bears on 
specific constructs, and the discussion sometimes speculates about how results 
might extrapolate to different units, treatments, outcomes, and settings. 

Further, practicing scientists do all this not just with single studies that they 
read or conduct but also with multiple studies. They nearly always think about 
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how their own studies fit into a larger literature about both the constructs being 
measured and the variables that may or may not bound or explain a causal connec­
tion, often documenting this fit in the introduction to their study. And they apply all 
five principles when they conduct reviews of the literature, in which they make in­
ferences about the kinds of generalizations that a body of research can support. 

Throughout this book, and especially in Chapters 11 to 13, we provide more 
details about this grounded theory of causal generalization and about the scientific 
practices that it suggests. Adopting this grounded theory of generalization does not 
imply a rejection of formal probability sampling. Indeed, we recommend such ~am­
piing unambiguously when it is feasible, along with purposive sampling schemes to 
aid generalization when formal random selection methods cannot be implemented, 
But we also show that sampling is just one method that practicing scientists use to 
make causal generalizations, along with practical logic, application of diverse sta­
tistical methods, and use of features of design other than sampling. 

EXPERIMENTS AND METASCIENCE 

Extensive philosophical debate sometimes surrounds experimentation. Here we 
briefly summarize some key features of these debates, and then we discuss some 
implications of these debates for experimentation. However, there is a sense in 
which all this philosophical debate is incidental to the practice of experimentation. 
Experimentation is as old as humanity itself, so it preceded humanity's philo­
sophical efforts to understand causation and generalization by thousands of years. 
Even over just the past 400 years of scientific experimentation, we can see some 
constancy of experimental concept and method, whereas diverse philosophical 
conceptions of the experiment have come and gone. As Hacking (1983) said, "Ex­
perimentation has a life of its own" (p. 150). It has been one of science's most 
powerful methods for discovering descriptive causal relationships, and it has done 
so well in so many ways that its place in science is probably assured forever. To 
justify its practice today, a scientist need not resort to sophisticated philosophical 
reasoning about experimentation. 

Nonetheless, it does help scientists to understand these philosophical debates. 
For example, previous distinctions in this chapter between molar and molecular 
causation, descriptive and explanatory cause, or probabilistic and deterministic 
causal inferences all help both philosophers and scientists to understand better 
both the purpose and the results of experiments (e.g., Bunge, 1959; Eells, 1991; 
Hart & Honore, 1985; Humphreys, 1989; Mackie, 1974; Salmon, 1984, 1989; 
Sobel, 1993; P. A. White, 1990). Here we focus on a different and broader set of 
critiques of science itself, not only from philosophy but also from the pistory, so­
ciology, and psychology of science (see useful general reviews by Bechtel, 1988; 
H. I. Brown, 1977; Oldroyd, 1986). Some of these works have been explicitly 
about the nature of experimentation, seeking to create a justified role for it (e.g., 
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Bhaskar, 1975; Campbell, 1982, 1988; Danziger, 1990; S. Drake, 1981; Gergen, 
1973; Gholson, Shadish, Neimeyer, & Houts, 1989; Gooding, Pinch, & Schaffer, 
1989b; Greenwood, 1989; Hacking, 1983; Latour, 1987; Latour & Woolgar, 
1979; Morawski, 1988; Orne, 1962; R. Rosenthal, 1966; Shadish & Fuller, 1994; 
Shapin, 1994). These critiques help scientists to see some limits of experimenta­
tion in both science and society. 

The Kuhnian Critique 

Kuhn (1962) described scientific revolutions as different and partly incommensu­
rable paradigms that abruptly succeeded each other in time and in which the grad­
ual accumulation of scientific knowledge was a chimera. Hanson (1958), Polanyi 
(1958), Popper (1959), Toulmin (1961), Feyerabend (1975), and Quine (1951, 
1969) contributed to the critical momentum, in part by exposing the gross mis­
takes in logical positivism's attempt to build a philosophy of science based on re­
constructing a successful science such as physics. All these critiques denied any 
firm foundations for scientific knowledge (so, by extension, experiments do not 
provide firm causal knowledge). The logical positivists hoped to achieve founda­
tions on which to build knowledge by tying all theory tightly to theory-free ob­
servation through predicate logic. But this left out important scientific concepts 
that could not be tied tightly to observation; and it failed to recognize that all ob­
servations are impregnated with substantive and methodological theory, making 
it impossible to conduct theory-free tests.11 

The impossibility of theory-neutral ubservation (often referred to as the 
Quine-Duhem thesis) implies that the results of any single test (and so any single 
experiment) are inevitably ambiguous. They could be disputed, for e~ample, on 
grounds that the theoretical assumptions built into the outcome measure were 
wrong or that the study made a faulty assumption about how high a treatment 
dose was required to be effective. Some of these assumptions are small, easily de­
tected, and correctable, such as when a voltmeter gives the wrong reading because 
the impedance of the voltage source was much higher than that of the meter (Wil­
son, 1952). But other assumptions are more paradigmlike, impregnating a theory 
so completely that other parts of the theory make no sense without them (e.g., the 
assumption that the earth is the center of the universe in pre-Galilean astronomy). 
Because the number of assumptions involved in any scientific test is very large, 
researchers can easily find some assumptions to fault or can even posit new 

11. However, Holton (1986) reminds us not to overstate the reliance of positivists on empirical data: "Even the father 
of positivism, Auguste Comte, had written o o o that without a theory of some sort by which to link phenomena to some 
principles 'it would not only be impossible to combine the isolated observations and draw any useful conclusions, we 
would not even be able to remember them, and, for the most part, the fact would not be noticed by our eyes"' (po 32)0 
Similarly, Uebel (1992) provides a more detailed historical analysis of the protocol sentence debate in logical 
positivism, showing some surprisingly nonstereotypical positions held by key players such as Carnapo 
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assumptions (Mitroff & Fitzgerald, 1977). In this way, substantive theories are 
less testable than their authors originally conceived. How can a theory be tested 
if it is made of clay rather than granite? 

For reasons we clarify later, this critique is more true of single studies and less 
true of programs of research. But even in the latter case, undetected constant biases 
can result in flawed inferences about cause and its generalization. As a result, no ex­
periment is ever fully certain, and extrascientific beliefs and preferences always have 
room to influence the many discretionary judgments involved in all scientific belief. 

Modern Social Psychological Critiques 

Sociologists working within traditions variously called social constructivism, epis­
temological relativism, and the strong program (e.g., Barnes, 1974; Bloor, 1976; 
Collins, 1981; Knorr-Cetina, 1981; Latour & Woolgar, 1979; Mulkay, 1979) have 
shown those extrascientific processes at work in science. Their empirical studies 
show that scientists often fail to adhere to norms commonly proposed as part of 
good science (e.g., objectivity, neutrality, sharing of information). They have also 
shown how that which comes to be reported as scientific knowledge is partly de­
termined by social and psychological forces and partly by issues of economic and 
political power both within science and in the larger society-issues that are rarely 
mentioned in published research reports. The most extreme among these sociolo­
gists attributes all scientific knowledge to such extrascientific processes, claiming 
that "the natural world has a small or nonexistent role in the construction of sci­
entific knowledge" (Collins, 1981, p. 3). 

Collins does not deny ontological realism, that real entities exist in the world. 
Rather, he denies epistemological (scientific) realism, that whatever external real­
ity may exist can constrain our scientific theories. For example, if atoms really ex­
ist, do they affect our scientific theories at all? If our theory postulates an atom, is 
it describing a real entity that exists roughly as we describe it? Epistemological rel­
ativists such as Collins respond negatively to both questions, believing that the 
most important influences in science are social, psychological, economic, and po­
litical, and that these might even be the only influences on scientific theories. This 
view is not widely endorsed outside a small group of sociologists, but it is a use­
ful counterweight to naive assumptions that scientific studies somehow directly re­
veal nature to us (an assumption we call naive realism). The results of all studies, 
including experiments, are profoundly subject to these extrascientific influences, 
from their conception to reports of their results. 

Science and Trust 

A standard image of the scientist is as a skeptic, a person who only trusts results that 
have been personally verified. Indeed, the scientific revolution of the 17th century 
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claimed that trust, particularly trust in authority and dogma, was antithetical to 
good science. Every authoritative assertion, every dogma, was to be open to ques­
tion, and the job of science was to do that questioning. 

That image is partly wrong. Any single scientific study is an exercise in trust 
(Pinch, 1986; Shapin, 1994). Studies trust the vast majority of already developed 
methods, findings, and concepts that they use when they test a new hypothesis. 
For example, statistical theories and methods are usually taken on faith rather 
than personally verified, as are measurement instruments. The ratio of trust to 
skepticism in any given study is more like 99% trust to 1% skepticism than the 
opposite. Even in lifelong programs of research, the single scientist trusts much 
more than he or she ever doubts. Indeed, thoroughgoing skepticism is probably 
impossible for the individual scientist, to judge from what we know of the psy­
chology of science (Gholson et al., 1989; Shadish & Fuller, 1994). Finally, skepti­
cism is not even an accurate characterization of past scientific revolutions; Shapin 
(1994) shows that the role of "gentlemanly trust" in 17th-century England was 
central to the establishment of experimental science. Trust pervades science, de­
spite its rhetoric of skepticism. 

Implications for Experiments 

The net result of these criticisms is a greater appreciation for the equivocality of 
all scientific knowledge. The experiment is not a clear window that reveals nature 
directly to us. To the contrary, experiments yield hypothetical and fallible knowl­
edge that is often dependent on context and imbued with many unstated theoret­
ical assumptions. Consequently, experimental results are partly relative to those 
assumptions and contexts and might well change with new assumptions or con­
texts. In this sense, all scientists are epistemological constructivists and relativists. 
The difference is whether they are strong or weak relativists. Strong relativists 
share Collins's position that only extrascientific factors influence our theories. 
Weak relativists believe that both the ontological world and the worlds of ideol­
ogy, interests, values, hopes, and wishes play a role in the construction of scien­
tific knowledge. Most practicing scientists, including ourselves, would probably 
describe themselves as ontological realists but weak epistemological relativists.12 

To the extent that experiments reveal nature to us, it is through a very clouded 
windowpane (Campbell, 1988). 

Such counterweights to naive views of experiments were badly needed. As re­
cently as 30 years ago, the central role of the experiment in science was probably 

12. If space permitted, we could extend this discussion to a host of other philosophical issues that have been raised 
about the experiment, such as its role in discovery versus confirmation, incorrect assertions that the experiment is 
tied to some specific philosophy such as logical positivism or pragmatism, and the various mistakes that are 
frequently made in such discussions (e.g., Campbell, 1982, 1988; Cook, 1991; Cook & Campbell, 1986; Shadish, 
1995a). 
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taken more for granted than is the case today. For example, Campbell and Stan­
ley (1963) described themselves as: 

committed to the experiment: as the only means for settling disputes regarding educa­
tional practice, as the only way of verifying educational improvements, and as the only 
way of establishing a cumulative tradition in which improvements can be introduced 
without the danger of a faddish discard of old wisdom in favor of inferior novelties. (p. 2) 

Indeed, Hacking ( 1983) points out that '"experimental method' used to be just an­
other name for scientific method" (p. 149); and experimentation was then a more 
fertile ground for examples illustrating basic philosophical issues than it was a 
source of contention itself. 

Not so today. We now understand better that the experiment is a profoundly 
human endeavor, affected by all the same human foibles as any other human en­
deavor, though with well-developed procedures for partial control of some of the 
limitations that have been identified to date. Some of these limitations are com­
mon to all science, of course. For example, scientists tend to notice evidence that 
confirms their preferred hypotheses and to overlook contradictory evidence. They 
make routine cognitive errors of judgment and have limited capacity to process 
large amounts of information. They react to peer pressures to agree with accepted 
dogma and to social role pressures in their relationships to students, participants, 
and other scientists. They are partly motivated by sociological and economic re­
wards for their work (sadly, sometimes to the point of fraud), and they display all­
too-human psychological needs and irrationalities about their work. Other limi­
tations have unique relevance to experimentation. For example, if causal results 
are ambiguous, as in many weaker quasi-experiments, experimenters may attrib­
ute causation or causal generalization based on study features that have little to 
do with orthodox logic or method. They may fail to pursue all the alternative 
causal explanations because of a lack of energy, a need to achieve closure, or a bias 
toward accepting evidence that confirms their preferred hypothesis. Each experi­
ment is also a social situation, full of social roles (e.g., participant, experimenter, 
assistant) and social expectations (e.g., that people should provide true informa­
tion) but with a uniqueness (e.g., that the experimenter does not always tell the 
truth) that can lead to problems when social cues are misread or deliberately 
thwarted by either party. Fortunately, these limits are not insurmountable, as for­
mal training can help overcome some of them (Lehman, Lempert, & Nisbett, 
1988). Still, the relationship between scientific results and the world that science 
studies is neither simple nor fully trustworthy. 

These social and psychological analyses have taken some of the luster from 
the experiment as a centerpiece of science. The experiment may have a life of its 
own, but it is no longer life on a pedestal. Among scientists, belief in the experi­
ment as the only means to settle disputes about causation is gone, though it is still 
the preferred method in many circumstances. Gone, too, is the belief that the 
power experimental methods often displayed in the laboratory would transfer eas­
ily to applications in field settings. As a result of highly publicized science-related 
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events such as the tragic results of the Chernobyl nuclear disaster, the disputes over 
certainty levels of DNA testing in the O.J. Simpson trials, and the failure to find 
a cure for most canceis after decades of highly publicized and funded effort, the 
general public now better understands the limits of science. 

Yet we should not take these critiques too far. Those who argue against 
theory-free tests often seem to suggest that every experiment will come out just as 
the experimenter wishes. This expectation is totally contrary to the experience of 
researchers, who find instead that experimentation is often frustrating and disap­
pointing for the theories they loved so much. Laboratory results may not speak 
for themselves, but they certainly do not speak only for one's hopes and wishes. 
We find much to value in the laboratory scientist's belief in "stubborn facts" with 
a life span that is greater than the fluctuating theories with which one tries to ex­
plain them. Thus many basic results about gravity are the same, whether they are 
contained within a framework developed by Newton or by Einstein; and no suc­
cessor theory to Einstein's would be plausible unless it could account for most of 
the stubborn factlike findings about falling bodies. There may not be pure facts, 
but some observations are clearly worth treating as if they were facts. 

Some theorists of science-Hanson, Polanyi, Kuhn, and Feyerabend 
included-have so exaggerated the role of theory in science as to make experi­
mental evidence seem almost irrelevant. But exploratory experiments that were 
unguided by formal theory and unexpected experimental discoveries tangential to 
the initial research motivations have repeatedly been the source of great scientific 
advances. Experiments have provided many stubborn, dependable, replicable re­
sults that then become the subject of theory. Experimental physicists feel that their 
laboratory data help keep their more speculative theoretical counterparts honest, 
giving experiments an indispensable role in science. Of course, these stubborn 
facts often involve both commonsense presumptions and trust in many well­
established theories that make up the shared core of belief of the science in ques­
tion. And of course, these stubborn facts sometimes prove to be undependable, are 
reinterpreted as experimental artifacts, or are so laden with a dominant focal the­
ory that they disappear once that theory is replaced. But this is not the case with 
the great bulk of the factual base, which remains reasonably dependable over rel­
atively long periods of time. 

A WORLD WITHOUT EXPERIMENTS OR CAUSES? 

To borrow a thought experiment from Macintyre (1981), imagine that the slates 
of science and philosophy were wiped clean and that we had to construct our un­
derstanding of the world anew. As part of that reconstruction, would we reinvent 
the notion of a manipulable cause? We think so, largely because of the practical 
utility that dependable manipulanda have for our ability to survive and prosper. 
Would we reinvent the experiment as a method for investigating such causes? 
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Again yes, because humans will always be trying to better know how well these 
manipulable causes work. Over time, they will refine how they conduct those ex­
periments and so will again be drawn to problems of counterfactual inference, of 
cause preceding effect, of alternative explanations, and of all of the other features 
of causation that we have discussed in this chapter. In the end, we would proba­
bly end up with the experiment or something very much like it. This book is one 
more step in that ongoing process of refining experiments. It is about improving 
the yield from experiments that take place in complex field settings, both the qual­
ity of causal inferences they yield and our ability to generalize these inferences to 
constructs and over variations in persons, settings, treatments, and outcomes. 
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